LPAR-05 Workshop: Empirically Successfull Automated Reasoning in Higher-Order Logic (ESHOL)

نویسندگان

  • Christoph Benzmüller
  • John Harrison
  • Carsten Schürmann
چکیده

Otter-lambda is a theorem-prover based on an untyped logic with lambda calculus, called Lambda Logic. Otter-lambda is built on Otter, so it uses resolution proof search, supplemented by demodulation and paramodulation for equality reasoning, but it also uses a new algorithm, lambda unification, for instantiating variables for functions or predicates. The basic idea of a typed interpretation of a proof is to “type” the function and predicate symbols by specifying the legal types of their arguments and return values. The idea of “implicit typing” is that if the axioms can be typed in this way then the consequences should be typable too. This is not true in general if unrestricted lambda unification is allowed, but for a restricted form of “type-safe” lambda unification it is true. The main theorem of the paper shows that the ability to type proofs if the axioms can be typed works for the rules of inference used by Otter-lambda, if type-safe lambda unification is used, and if demodulation and paramodulation from or into variables are not allowed. All the interesting proofs obtained with Otter-lambda, except those explicitly involving untypable constructions such as fixed-points, are covered by this theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPAR-05 Workshop: Empirically Successful Automated Reasoning in Higher-Order Logic (ESHOL)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

متن کامل

Evaluation of Systems for Higher-order Logic (ESHOL)

The ESHOL sessions of the PAAR workshop focussed on the use of higher-order reasoning systems. A particular focus was on means to evaluate higher-order reasoning systems. The notion of higher-order included, but was not limited to, ramified type theory, simple type theory, intuitionistic and constructive type theory, and logical frameworks. The notion of reasoning systems included automated and...

متن کامل

2 0 Fe b 20 07 The Bedwyr system for model checking over syntactic expressions

syntax. In Glynn Winskel, editor, 12th Symp. on Logic in Computer Science, pages 434–445, Warsaw, Poland, July 1997. IEEE Computer Society Press.4. Dale Miller. Abstract syntax for variable binders: An overview. In John Lloydand et. al., editors, Computational Logic CL 2000, number 1861 in LNAI, pages239–253. Springer, 2000.5. Dale Miller and Alwen Tiu. A proof theory for generi...

متن کامل

The Bedwyr System for Model Checking over Syntactic Expressions

syntax. In Glynn Winskel, editor, 12th Symp. on Logic in Computer Science, pages 434–445, Warsaw, Poland, July 1997. IEEE Computer Society Press.4. Dale Miller. Abstract syntax for variable binders: An overview. In John Lloyd and et. al., editors, Computational Logic CL 2000, number 1861 in LNAI, pages 239–253. Springer, 2000.5. Dale Miller and Alwen Tiu. A proof theory for generic judg...

متن کامل

Exploring Steinitz-Rademacher Polyhedra: a Challenge for Automated Reasoning Tools

This note reports on some experiments, using a handful of standard automated reasoning tools, for exploring Steinitz-Rademacher polyhedra, which are models of a certain first-order theory of incidence structures. This theory and its models, even simple ones, presents significant, geometrically fascinating challenges for automated reasoning tools.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0601042  شماره 

صفحات  -

تاریخ انتشار 2005